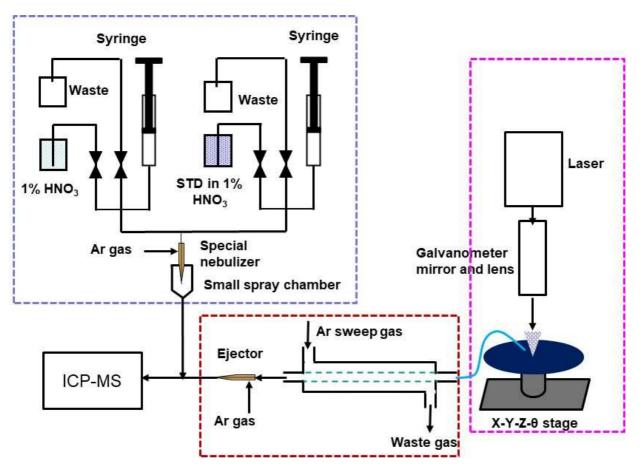


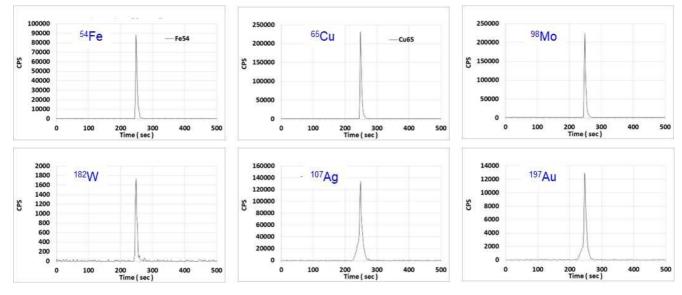
# LAGM Laser Ablation GED\_MSAG System




# IAS Inc.

A 300 mm wafer sample can be analyzed by Laser Ablation (LA) ICP-MS without using a small, enclosed cell. Generated particles by LA are aspirated by an ejector and introduced to ICP-MS via GED.

#### **Features**


- Femto-second laser and Galvanometer mirror ablates up to 12" (300 mm) wafer precisely.
- A wafer sample is laser ablated without using a small, enclosed cell, and the generated particles are aspirated by the ejector and introduced to the ICP-MS via Gas Exchange Device (GED).
- Dual syringe model MSAG\_DS enables quantitative analysis under a dry plasma condition of ICP-MS using the method of standard addition.
- Ultra-trace level of spot and wafer bevel analysis is available.
- Deeper level, > 300  $\mu$ m, of profile and impurity analysis is available.
- Two load ports from 12" (300 mm) to 6" (150 mm) wafer, aligner and wafer transfer robot are integrated for fully automated operation (Option)
- Alternative sampling stage is available for non-wafer samplers.



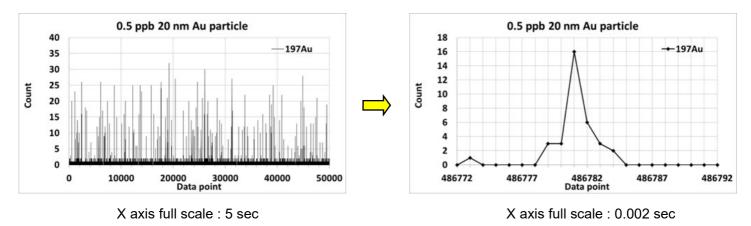
Schematic diagram of LA-GED-MSAG-ICP-MS

### Analysis of spiked Si wafer

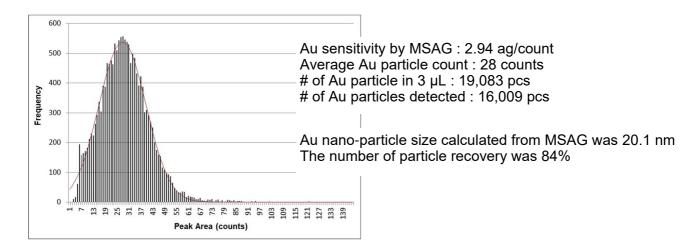
- TRA analysis of spiked Si wafer sample
- 5 uL of 0.1 ppb mixed standard was spiked on a Si wafer and dried.



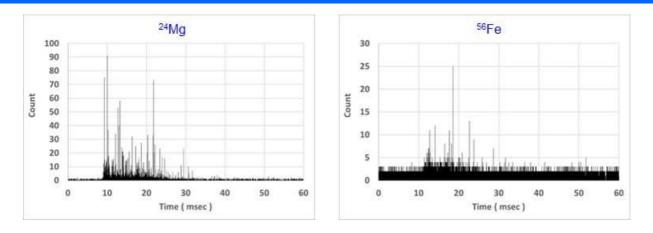
LA frequency: 10 kHz, Galvanometer mirror scan speed: 50 mm/sec, Galvanometer mirror scan width: 5 mm (Y axis direction), Wafer stage movement speed: 0.0476 mm/sec (X axis), Wafer stage movement distance :40 mm (X axis) ICP-MS data acquisition mode: Transient analysis, Dwell time: 50 msec/mass, Date acquisition interval :1.62 sec


• Quantitative analysis of SiC wafer using the method of standard addition

| Analyte |      | Ar                            |         |         |       |          |           | SiC                           |             |            |       |            |           | Cubratian   | Com       |
|---------|------|-------------------------------|---------|---------|-------|----------|-----------|-------------------------------|-------------|------------|-------|------------|-----------|-------------|-----------|
|         | Mass | MSAG 10 ppb STD flow (uL/min) |         |         | 0.00  | antanunt |           | MSAG 10 ppb STD flow (uL/min) |             |            | 0.07  | ante a set |           | Subtraction | Conc.     |
|         |      | 0                             | 1.5     | 3       | Corr. | ag/count | ag        | 0                             | 1.5         | 3          | Corr. | ag/count   | ag        | (ag)        | (wt. ppb) |
| Li      | 7    | 16                            | 174,989 | 367,620 | 1.000 | 1.4      | 22        | 12                            | 176,033     | 367,165    | 1.000 | 1.4        | 16        | (6)         | < 5       |
| Na      | 23   | 267                           | 259,241 | 501,581 | 1.000 | 1.0      | 267       | 154                           | 259,383     | 496,774    | 1.000 | 1.0        | 155       | (111)       | < 13      |
| Mg      | 24   | 3                             | 36,759  | 76,255  | 1.000 | 6.6      | 18        | 30                            | 42,229      | 77,791     | 0.999 | 6.4        | 195       | 177         | 647       |
| AI      | 27   | 469                           | 196,939 | 400,024 | 1.000 | 1.3      | 587       | 4,853                         | 196,846     | 398,317    | 1.000 | 1.3        | 6167      | 5581        | 20,40     |
| К       | 39   | 855                           | 89,725  | 193,945 | 0.999 | 2.6      | 2214      | 848                           | 88,370      | 196,667    | 0.998 | 2.6        | 2165      | (49)        | < 81      |
| Са      | 40   | 12                            | 77,147  | 165,683 | 0.999 | 3.0      | 37        | 6,095                         | 78,132      | 171,641    | 0.997 | 3.0        | 18409     | 18372       | 67,00     |
| Ti      | 48   | 4                             | 3,684   | 7,533   | 1.000 | 66.4     | 266       | 30                            | 4,401       | 7,658      | 0.996 | 65.5       | 1988      | 1723        | 6,28      |
| V       | 51   | 7                             | 42,665  | 93,469  | 0.999 | 5.3      | 37        | 9                             | 42,062      | 96,303     | 0.997 | 5.2        | 48        | 11          | < 17      |
| Cr      | 52   | 2,184                         | 98,824  | 204,904 | 1.000 | 2.5      | 5386      | 2,301                         | 97,829      | 209,541    | 0.999 | 2.4        | 5551      | 165         | < 127     |
| Mn      | 55   | 241                           | 195,973 | 406,693 | 1.000 | 1.2      | 297       | 149                           | 193,386     | 417,034    | 0.999 | 1.2        | 179       | (118)       | < 16      |
| Fe      | 56   | 508                           | 158,139 | 333,800 | 1.000 | 1.5      | 762       | 4,205                         | 210,726     | 347,230    | 0.993 | 1.5        | 6130      | 5368        | 19,60     |
| Fe      | 54   | 113                           | 12,092  | 25,652  | 0.999 | 19.6     | 2212      | 282                           | 14,793      | 26,556     | 0.998 | 19.0       | 5373      | 3161        | 11,50     |
| Co      | 59   | 28                            | 112,862 | 243,015 | 0.999 | 2.1      | 58        | 24                            | 111,429     | 248,375    | 0.998 | 2.0        | 48        | (9)         | < 10      |
| Ni      | 60   | 77                            | 27,434  | 58,610  | 0.999 | 8.5      | 655       | 93                            | 27,154      | 60,136     | 0.998 | 8.3        | 772       | 116         | < 87      |
| Cu      | 63   | 649                           | 78,263  | 165,413 | 0.999 | 3.0      | 1970      | 986                           | 77,793      | 170,014    | 0.999 | 3.0        | 2917      | 946         | 3,45      |
| Cu      | 65   | 304                           | 35,324  | 75,103  | 0.999 | 6.7      | 2032      | 470                           | 34,998      | 76,734     | 0.999 | 6.6        | 3084      | 1052        | 3,84      |
| Zn      | 66   | 32                            | 34,001  | 71,822  | 1.000 | 7.0      | 221       | 148                           | 34,091      | 73,350     | 0.999 | 6.8        | 1009      | 788         | 2,87      |
| Zn      | 64   | 12                            | 54,735  | 115,774 | 1.000 | 4.3      | 52        | 191                           | 54,951      | 119,118    | 0.999 | 4.2        | 804       | 753         | 2,75      |
| Ga      | 71   | 508                           | 127,800 | 266,371 | 1.000 | 1.9      | 955       | 555                           | 130,726     | 271,534    | 1.000 | 1.8        | 1024      | 69          | < 47      |
| Ge      | 74   | 10                            | 5,030   | 10,857  | 0.999 | 46.1     | 475       | 12                            | 5,184       | 10,817     | 1.000 | 46.3       | 540       | 65          | < 1,73    |
| As      | 75   | 72                            | 18,006  | 36,732  | 1.000 | 13.6     | 978       | 70                            | 17,893      | 36,577     | 1.000 | 13.7       | 959       | (19)        | < 1,25    |
| Rb      | 85   | 94                            | 190,944 | 400,964 | 1.000 | 1.2      | 118       | 78                            | 192,041     | 399,331    | 1.000 | 1.3        | 97        | (20)        | < 12      |
| Sr      | 88   | 14                            | 205,366 | 428,998 | 1.000 | 1.2      | 16        | 117                           | 206,084     | 427,355    | 1.000 | 1.2        | 137       | 121         | 44        |
| Zr      | 90   | 22                            | 43,861  | 91,653  | 1.000 | 5.5      | 120       | 14                            | 43,724      | 91,067     | 1.000 | 5.5        | 75        | (45)        | < 22      |
| Mo      | 98   | 1,066                         | 36,940  | 76,816  | 1.000 | 6.6      | 7034      | 1,116                         | 36,398      | 78,275     | 0.999 | 6.5        | 7230      | 196         | < 2,37    |
| Ag      | 107  | 9                             | 74,376  | 154,641 | 1.000 | 3.2      | 28        | 16                            | 73,942      | 153,750    | 1.000 | 3.3        | 51        | 23          | < 14      |
| Cd      | 111  | 7                             | 16,437  | 34,420  | 1.000 | 14.5     | 97        | 9                             | 16,580      | 34,453     | 1.000 | 14.5       | 131       | 33          | < 47      |
| Sn      | 118  | 78                            | 39,748  | 82,164  | 1.000 | 6.1      | 477       | 160                           | 39,969      | 81,987     | 1.000 | 6.1        | 980       | 503         | 1,83      |
| Sb      | 121  | 9                             | 38,013  | 79,010  | 1.000 | 6.3      | 59        | 25                            | 38,016      | 78,353     | 1.000 | 6.4        | 160       | 101         | 36        |
| Cs      | 133  | 26                            | 175,692 | 364,589 | 1.000 | 1.4      | 36        | 26                            | 176,594     | 362,761    | 1.000 | 1.4        | 35        | (0)         | < 7       |
| Ва      | 138  | 7                             | 100,331 | 209,654 | 1.000 | 2.4      | 17        | 22                            | 100,463     | 208,022    | 1.000 | 2.4        | 52        | 35          | 12        |
| W       | 184  | 318                           | 21,326  | 44,558  | 1.000 | 11.3     | 3591      | 323                           | 21,279      | 43,969     | 1.000 | 11.5       | 3704      | 114         | < 2,25    |
| Pb      | 208  | 1                             | 93,474  | 194,978 | 1.000 | 2.6      | 2         | 63                            | 92,306      | 192,864    | 1.000 | 2.6        | 163       | 161         | 58        |
| Pb      | 206  | 0                             | 45,381  | 94,370  | 1.000 | 5.3      | 0         | 29                            | 44,925      | 93,498     | 1.000 | 5.3        | 153       | 153         | 55        |
| Si      | 28   | 9,346                         | 15,582  | 21.355  | 1.000 | 4163.6   | 3.89.E+07 | 50,492                        | (*1) 57,201 | (*2) 61429 | 0.992 | 4571.6     | 2.31.E+08 | 191,916,935 |           |


LA frequency: 10 kHz, Galvanometer mirror scan speed: 50 mm/sec, Galvanometer mirror scan width: 1 mm (Y axis) Wafer stage movement speed: 0.025 mm/sec (X axis), ICP-MS data acquisition mode: Spectrum, Integration time: 1 sec/mass

### Analysis of 0.5 ppb 20 nm Au particles on Si wafer

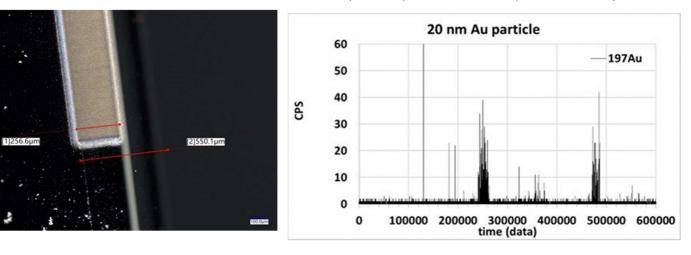

- Single nano-particle analysis of Au particles on Si wafer sample.
- 3 uL of 0.5 ppb Au particles standard solution in IPA was spiked on a Si wafer and dried.



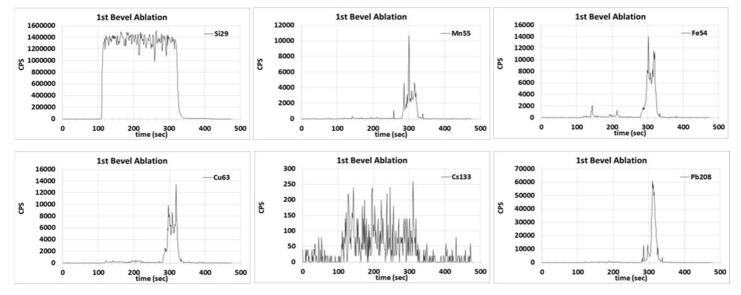
LA frequency: 10 kHz, Galvanometer mirror scan speed: 50 mm/sec, Galvanometer mirror scan width: 15 mm (X Y axis direction), ICP-MS data acquisition mode: single nanoparticle mode, Dwell time: 0.1 msec/mass, Analysis time: 600 sec



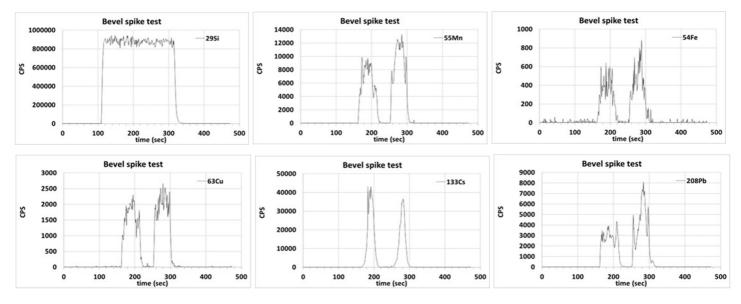
### Analysis of GaN wafer




LA frequency: 10 kHz, Galvanometer mirror scan speed: 50 mm/sec, Galvanometer mirror scan width: 5 mm (Y axis direction), Wafer stage movement speed: 0.025 mm/sec (X axis),


ICP-MS data acquisition mode: Single nano-particle analysis, Dwell time: 0.1 msec/mass, Analysis time: 60 sec

## Analysis of bevel


Photo of bevel area Laser ablation width : 250 µm Analysis of Au particles on bevel (Two droplets of 20 nm Au particle solution)



Analysis of bevel of Si wafer (1st ablation): Several impurities were found at the same spot.



Analysis of spiked wafer (Two droplets of STD solution on the bevel area after 7 times cleaning): Two peaks were detected.



# LAGM Software

LAGM software communicates with ICP-MS software that enables fully automated operation.

- Calibration mode : Calibration curves while laser ablating a sample are obtained using MSAG\_DS.
- Full scan mode : Entire wafer is laser ablated according to the analysis time. LAGM software automatically calculates speed of X-Y-Z-θ stage to ablate the entire wafer equally.
- Spot mode : Multiple specified spots can be analyzed automatically. The spot information in KLARF format file can be imported.
- Straight mode : Straight line specified by two spots is analyzed with a specified width continuously.
- Block mode : It is similar to the straight mode, but a specified block size (e.g. 1 mm x 1 mm) is ablated for a specified time. After waiting for an interval time, the block next to the ablated block is ablated. This mode is better than the straight mode in terms of space resolution.
- Depth profile mode : The same spot with a specified size is ablated repeatedly to get depth profile information. An interval time can be set after ablating one layer, which gives better resolution of depth profile.
- Bevel mode : Multiple specified areas of wafer bevel can be analyzed automatically.

Expert\_LA model includes two load ports, which enables fully automated analysis of wafer samples by setting up a recipe for each wafer. A sample wafer is taken out from one of L/Ps, and it is recovered in another L/P after analysis of wafer.

LAGM software controls MSAG\_DS that has two special syringe pumps. One of syringe pumps contains a 1% HNO<sub>3</sub> solution and the other syringe pump contains a mixed standard solution in 1% HNO<sub>3</sub>, which are injected at 3  $\mu$ L/min in total and the ratio of two syringe pumps are changed to make

#### Specification and Environment

#### **Basic components**

- Femto-second laser : 257 nm
- Maximum ablation frequency : 60 kHz
- Galvanometer mirror moving speed : 100 mm/sec
- X-Y-Z-θ stage
- Ejector
- GED-Q
- MSAG-DS
- Mass flow controllers
- LAGM intelligent software
- FFU (ISO class 3 environment)

#### Option

 Expert\_LA that includes the followings: FOUP loader : 2 set Wafer transfer robot : 1 set

#### Environment

Temperature :  $15 \sim 30^{\circ}$ C Humidity :  $35 \sim 85^{\circ}$ RH No condensation

Power supply, size and weight depends on the model. Please contact us.

#### IAS Inc.



2-2-1 Hinohonmachi, Hino, Tokyo 191-0011 Japan TEL: 042-589-5525 FAX: 042-589-5526 E-Mail: iasjapan@iasinc.jp URL: https://iasinc.jp